Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther ; 32(5): 1540-1560, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38449312

RESUMO

Podocytes are essential to maintaining the integrity of the glomerular filtration barrier, but they are frequently affected in lupus nephritis (LN). Here, we show that the significant upregulation of Drp1S616 phosphorylation in podocytes promotes mitochondrial fission, leading to mitochondrial dysfunction and podocyte injury in LN. Inhibition or knockdown of Drp1 promotes mitochondrial fusion and protects podocytes from injury induced by LN serum. In vivo, pharmacological inhibition of Drp1 reduces the phosphorylation of Drp1S616 in podocytes in lupus-prone mice. Podocyte injury is reversed when Drp1 is inhibited, resulting in the alleviation of proteinuria. Mechanistically, complement component C5a (C5a) upregulates the phosphorylation of Drp1S616 and promotes mitochondrial fission in podocytes. Moreover, the expression of C5a receptor 1 (C5aR1) is notably upregulated in podocytes in LN. C5a-C5aR1 axis-controlled phosphorylation of Drp1S616 and mitochondrial fission are substantially suppressed when C5aR1 is knocked down by siRNA. Moreover, lupus-prone mice treated with C5aR inhibitor show reduced phosphorylation of Drp1S616 in podocytes, resulting in significantly less podocyte damage. Together, this study uncovers a novel mechanism by which the C5a-C5aR1 axis promotes podocyte injury by enhancing Drp1-mediated mitochondrial fission, which could have significant implications for the treatment of LN.


Assuntos
Complemento C5a , Dinaminas , Nefrite Lúpica , Dinâmica Mitocondrial , Podócitos , Receptor da Anafilatoxina C5a , Podócitos/metabolismo , Podócitos/patologia , Nefrite Lúpica/metabolismo , Nefrite Lúpica/patologia , Nefrite Lúpica/etiologia , Animais , Receptor da Anafilatoxina C5a/metabolismo , Receptor da Anafilatoxina C5a/genética , Camundongos , Dinaminas/metabolismo , Dinaminas/genética , Complemento C5a/metabolismo , Humanos , Fosforilação , Modelos Animais de Doenças , Mitocôndrias/metabolismo , Transdução de Sinais , Feminino
2.
Cell Metab ; 35(5): 837-854.e8, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37019104

RESUMO

Autoreactive B cell responses are essential for the development of systemic lupus erythematosus (SLE). Fibroblastic reticular cells (FRCs) are known to construct lymphoid compartments and regulate immune functions. Here, we identify spleen FRC-derived acetylcholine (ACh) as a key factor that controls autoreactive B cell responses in SLE. In SLE, CD36-mediated lipid uptake leads to enhanced mitochondrial oxidative phosphorylation in B cells. Accordingly, the inhibition of fatty acid oxidation results in reduced autoreactive B cell responses and ameliorated diseases in lupus mice. Ablation of CD36 in B cells impairs lipid uptake and differentiation of autoreactive B cells during autoimmune induction. Mechanistically, spleen FRC-derived ACh promotes lipid influx and generation of autoreactive B cells through CD36. Together, our data uncover a novel function of spleen FRCs in lipid metabolism and B cell differentiation, placing spleen FRC-derived ACh in a key position in promoting autoreactive B cells in SLE.


Assuntos
Lúpus Eritematoso Sistêmico , Baço , Camundongos , Animais , Acetilcolina , Metabolismo dos Lipídeos , Lipídeos
3.
Clin Transl Med ; 13(1): e1171, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36639826

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes coronavirus disease 2019 (COVID-19), which is still devastating economies and communities globally. The increasing infections of variants of concern (VOCs) in vaccinated population have raised concerns about the effectiveness of current vaccines. Patients with autoimmune diseases (PAD) under immunosuppressant treatments are facing higher risk of infection and potentially lower immune responses to SARS-CoV-2 vaccination. METHODS: Blood samples were collected from PAD or healthy controls (HC) who finished two or three doses of inactivated vaccines. Spike peptides derived from wild-type strain, delta, omicron BA.1 were utilised to evaluate T cell responses and their cross-recognition of delta and omicron in HC and PAD by flow cytometry and ex vivo IFNγ-ELISpot. RESULTS: We found that inactivated vaccine-induced spike-specific memory T cells were long-lasting in both PAD and HC. These spike-specific T cells were highly conserved and cross-recognized delta and omicron. Moreover, a third inactivated vaccine expanded spike-specific T cells that responded to delta and omicron spike peptides substantially in both PAD and HC. Importantly, the polyfunctionality of spike-specific memory T cells was preserved in terms of cytokine and cytotoxic responses. Although the extent of T cell responses was lower in PAD after two-dose, T cell responses were boosted to a greater magnitude in PAD by the third dose, bringing comparable spike-specific T cell immunity after the third dose. CONCLUSION: Inactivated vaccine-induced spike-specific T cells remain largely intact against delta and omicron variants. This study expands our understanding of inactivated vaccine-induced T cell responses in PAD and HC, which could have important indications for vaccination strategy.


Assuntos
Doenças Autoimunes , Vacinas contra COVID-19 , COVID-19 , Linfócitos T , Humanos , Doenças Autoimunes/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , SARS-CoV-2 , Linfócitos T/imunologia , Vacinas de Produtos Inativados
4.
Mol Ther ; 31(1): 193-210, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36146932

RESUMO

Interferon γ (IFNγ) produced by T cells represents the featured cytokine and is central to the pathogenesis of lupus nephritis (LN). Here, we identified nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the salvage NAD+ biosynthetic pathway, as playing a key role in controlling IFNγ production by CD4+ T cells in LN. Our data revealed that CD4+ T cells from LN showed an enhanced NAMPT-mediated NAD+ biosynthetic process, which was positively correlated with IFNγ production in CD4+ T cells. NAMPT promoted aerobic glycolysis and mitochondrial respiration in CD4+ T cells from patients with LN or MRL/lpr mice through the production of NAD+. By orchestrating metabolic fitness, NAMPT promoted translational efficiency of Ifng in CD4+ T cells. In vivo, knockdown of NAMPT by small interfering RNA (siRNA) or pharmacological inhibition of NAMPT by FK866 suppressed IFNγ production in CD4+ T cells, leading to reduced inflammatory infiltrates and ameliorated kidney damage in lupus mice. Taken together, this study uncovers a metabolic checkpoint of IFNγ-producing CD4+ T cells in LN in which therapeutically targeting NAMPT has the potential to normalize metabolic competence and blunt pathogenicity of CD4+ T cells in LN.


Assuntos
Interferon gama , Nefrite Lúpica , Camundongos , Animais , Interferon gama/genética , Linfócitos T/metabolismo , Nicotinamida Fosforribosiltransferase/genética , Nicotinamida Fosforribosiltransferase/metabolismo , NAD/metabolismo , Camundongos Endogâmicos MRL lpr , Citocinas/metabolismo , RNA Interferente Pequeno , Linfócitos T CD4-Positivos/metabolismo
5.
Gland Surg ; 11(10): 1673-1682, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36353580

RESUMO

Background: Breast cancers characterized by triple-negative status tend to be more malignant and have a poorer prognosis. A risk model for predicting breast cancer risk should be developed. Methods: We obtained gene expression and clinical characteristics data using the Clinical Proteomic Tumor Analysis Consortium (CPTAC) and The Cancer Genome Atlas (TCGA) database. Differential gene screening between patients with triple-negative breast cancer (TNBC) and non-triple-negative breast cancers (NTNBC) was performed according to the "edgeR" filter criteria. Univariate and multivariate Cox regression analyses were used to construct a risk model and identify prognosis-related genes. XCELL, TIMER, EPIC, QUANTISEQ, MCPCOUNTER, EPIC, CIBERSORT-ABS, and CIBERSORT software programs were used to determine the extent of tumor immune cell infiltration. To evaluate the clinical responses to breast cancer treatment, the half maximal inhibitory concentration (IC50s) of common chemotherapeutics were calculated using "pRRophetic" and "ggplot2". Cell proliferation was assayed using cell counting kit-8 (CCK8) and 5-Ethynyl-2'-deoxyuridine (EdU) Cell Proliferation Kit. A dual-luciferase reporter assay confirmed the gene regulatory relationship of sex determining region Y-box 10 (SOX10). Results: An assessment model was established for Keratin23 (KRT23) and non-specific cytotoxic cell receptor 1 (NCCRP1) using the univariate and multivariate Cox regression analyses. In addition, high expression levels of KRT23 and NCCRP1 indicated high proliferation and poor prognosis. We also found that the gene expression patterns of multiple genes were significantly more predictive of risks and have a higher level of consistency when assessing risk. In vitro experiments showed that the expressions of KRT23 and NCCRP1 were increased in TNBCs and promoted cell proliferation. Mechanically, the dual-luciferase reporter assay confirmed that SOX10 regulated the expressions of KRT23 and NCCRP1. The risk score model revealed a close relationship between the expressions of KRT23 and NCCRP1, the tumor immune microenvironment, and chemotherapeutics. Conclusions: In conclusion, we constructed a risk assessment model to predict the risk of TNBC patients, which acted as a potential predictor for chemosensitivity.

6.
Clin Transl Med ; 12(8): e999, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35917405

RESUMO

BACKGROUND: T helper cells in patients with autoimmune disease of idiopathic inflammatory myopathies (IIM) are characterized with the proinflammatory phenotypes. The underlying mechanisms remain unknown. METHODS: RNA sequencing was performed for differential expression genes. Gene expression in CD4+ T-cells was confirmed by quantitative real-time PCR. CD4+ T-cells from IIM patients or healthy controls were evaluated for metabolic activities by Seahorse assay. Glucose uptake, T-cell proliferation and differentiation were evaluated and measured by flow cytometry. Human CD4+ T-cells treated with iron chelators or Pfkfb4 siRNA were measured for glucose metabolism, proliferation and differentiation. Signalling pathway activation was evaluated by western blot and flow cytometry. Mouse model of experimental autoimmune myositis (EAM) were induced and treated with iron chelator or rapamycin. CD4+ T-cell differentiation and muscle inflammation in the EAM mice were evaluated. RESULTS: RNA-sequencing analysis revealed that iron was involved with glucose metabolism and CD4+ T-cell differentiation. IIM patient-derived CD4+ T-cells showed enhanced glycolysis and mitochondrial respiration, which was inhibited by iron chelation. CD4+ T-cells from patients with IIM was proinflammatory and iron chelation suppressed the differentiation of interferon gamma (IFNγ)- and interleukin (IL)-17A-producing CD4+ T-cells, which resulted in an increased percentage of regulatory T (Treg) cells. Mechanistically, iron promoted glucose metabolism by an upregulation of PFKFB4 through AKT-mTOR signalling pathway. Notably, the knockdown of Pfkfb4 decreased glucose influx and thus suppressed the differentiation of IFNγ- and IL-17A-producing CD4+ T-cells. In vivo, iron chelation inhibited mTOR signalling pathway and reduced PFKFB4 expression in CD4+ T-cells, resulting in reduced proinflammatory IFNγ- and IL-17A-producing CD4+ T-cells and increased Foxp3+ Treg cells, leading to ameliorated muscle inflammation. CONCLUSIONS: Iron directs CD4+ T-cells into a proinflammatory phenotype by enhancing glucose metabolism. Therapeutic targeting of iron metabolism should have the potential to normalize glucose metabolism in CD4+ T-cells and reverse their proinflammatory phenotype in IIM.


Assuntos
Doenças Autoimunes , Miosite , Animais , Glucose , Humanos , Inflamação , Interferon gama/metabolismo , Interleucina-17/genética , Interleucina-17/metabolismo , Ferro , Quelantes de Ferro , Camundongos , Miosite/tratamento farmacológico , Fosfofrutoquinase-2 , Linfócitos T Auxiliares-Indutores/metabolismo , Serina-Treonina Quinases TOR/genética , Virulência
7.
Front Immunol ; 13: 931761, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35844584

RESUMO

Tissue-resident memory T cells (TRM cells) have been shown to play an instrumental role in providing local immune responses for pathogen clearance in barrier tissues. However, their contribution to inflammatory bowel diseases (IBDs) and the underlying regulation are less clear. Here, we identified a critical role of T-cell immunoreceptor with immunoglobulin and ITIM (TIGIT) in regulating CD4+ TRM cells in an experimental model of intestinal inflammation. We found that CD4+ TRM cells were increased and correlated with disease activities in mice with dextran sulfate sodium (DSS)-induced colitis. Phenotypically, these CD4+ TRM cells could be classified into CD69+CD103- and CD69+CD103+ subsets. Functionally, these CD4+ TRM cells were heterogeneous. CD69+CD103- CD4+ TRM cells were pro-inflammatory and produced interferon-γ (IFNγ) and interleukin-17A (IL-17A), which accounted for 68.7% and 62.9% of total IFNγ+ and IL-17A+ CD4+ T cells, respectively, whereas CD69+CD103+ CD4+ TRM cells accounted for 73.7% Foxp3+ regulatory T cells. TIGIT expression was increased in CD4+ T cells in the gut of mice with DSS-induced colitis. TIGIT deficiency impaired IL-17A expression in CD69+CD103- CD4+ TRM cells specifically, resulting in ameliorated gut inflammation and tissue injury. Together, this study provides new insights into the regulation of gut inflammation that TIGIT deficiency protects mice from DSS-induced colitis, which might have a potential therapeutic value in the treatment of IBDs.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Células T de Memória/imunologia , Receptores Imunológicos/metabolismo , Animais , Linfócitos T CD4-Positivos , Colite/induzido quimicamente , Colite/metabolismo , Memória Imunológica , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/metabolismo , Interleucina-17/metabolismo , Camundongos , Receptores Imunológicos/genética
8.
Gland Surg ; 11(5): 826-836, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35694102

RESUMO

Background: DNA methylation status is strongly associated with the prognosis of breast invasive carcinoma (BRCA). Elucidating the mechanisms underlying DNA methylation coupled with determining its biological function is imperative to the effective development of treatment and prevention strategies for breast cancer. Methods: We retrieved transcriptome and DNA methylation profiles of BRCA patients from The Cancer Genome Atlas (TCGA) database, then applied the "limma" package in R software to identify differentially expressed genes (DEGs) and aberrantly methylated genes. Next, we used the "MethylMix" package to screen for methylation-driven genes, and performed univariate and multivariate Cox regression analyses to determine the prognostic value of the methylation-driven genes and clinical characteristics. We validated these findings in 51 breast cancer tissues alongside 51 corresponding normal tissues. Furthermore, we used cell experiments to clarify the biological function and underlying molecular mechanisms of HOTAIRM1 in vitro. Results: A total of 25 methylation-driven genes were identified in the dataset. Results from univariate and multivariate Cox regression showed that SYN2, HOTAIRM1, BCAS1, and ALDOC were significantly associated with patient prognosis. Immunohistochemistry and quantitative real-time polymerase chain reaction (qRT-PCR) results showed that the expression levels of SYN2 and HOTAIRM1 were negatively correlated with BRCA stage, whereas those of BCAS1 and ALDOC were positively correlated with BRCA stage. Results from in vitro experiments showed that knockdown HOTAIRM1 expression promoted breast cancer cells proliferation, clone formation, and invasion. Up-regulation of HOTAIRM1 inhibited breast cancer cells proliferation, clone formation, and invasion. Conclusions: In summary, low HOTAIRM1 expression is a significant prognostic factor for the survival of BRCA patients and thus could be a potential therapeutic target for the treatment of BRCA.

9.
J Pathol ; 257(2): 146-157, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35072951

RESUMO

Obesity is one of the major risk factors for cancer. Clinical studies have demonstrated that circulating levels of adiponectin are inversely correlated, not only with the extent of adiposity, but also with the incidence of several types of cancer, particularly endometrial cancer (EC). However, thus far, adiponectin remains a correlative factor, without definitive evidence to show a causal effect in EC and the potential mechanism(s) involved. To address this issue, we introduced an Apn-null mutation into Pten haploid-deficient (Pten+/- ) mice. The Pten heterozygous mutation alone led to the development of EC in less than 30% of female mice; however, when combined with the Apn-null mutation, the incidence of endometrial lesions rose to at least two-thirds. Although Apn deficiency did not further potentiate the Akt activation caused by the Pten mutation, it elevated the phosphorylation of mitogen-activated protein kinase (MAPK) p42/44, indicating activation of the MAPK signaling pathway. Treatment of Apn-/- ;Pten+/- mice with a MEK inhibitor blocked the development of EC. Finally, xenografts of a PTEN-proficient human EC cell line grew faster in Apn-deficient mice, whereas an adiponectin receptor agonist reduced xenograft growth of a PTEN-deficient human EC cell line. Thus, reduction of adiponectin activity promotes EC development, at least in the context of Pten mutation, by activating MAPK. © 2022 The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias do Endométrio , Erros Inatos do Metabolismo , Adiponectina/deficiência , Adiponectina/genética , Adiponectina/farmacologia , Animais , Neoplasias do Endométrio/patologia , Feminino , Humanos , Camundongos , Proteínas Quinases Ativadas por Mitógeno , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
10.
Front Immunol ; 12: 779560, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745151

RESUMO

Store-operated Ca2+ release-activated Ca2+ (CRAC) channel is the main Ca2+ influx pathway in lymphocytes and is essential for immune response. Lupus nephritis (LN) is an autoimmune disease characterized by the production of autoantibodies due to widespread loss of immune tolerance. In this study, RNA-seq analysis revealed that calcium transmembrane transport and calcium channel activity were enhanced in naive B cells from patients with LN. The increased expression of ORAI1, ORAI2, and STIM2 in naive B cells from patients with LN was confirmed by flow cytometry and Western blot, implying a role of CRAC channel in B-cell dysregulation in LN. For in vitro study, CRAC channel inhibition by YM-58483 or downregulation by ORAI1-specific small-interfering RNA (siRNA) decreased the phosphorylation of Ca2+/calmodulin-dependent protein kinase2 (CaMK2) and suppressed Blimp-1 expression in primary human B cells, resulting in decreased B-cell differentiation and immunoglobulin G (IgG) production. B cells treated with CaMK2-specific siRNA showed defects in plasma cell differentiation and IgG production. For in vivo study, YM-58483 not only ameliorated the progression of LN but also prevented the development of LN. MRL/lpr lupus mice treated with YM-58483 showed lower percentage of plasma cells in the spleen and reduced concentration of anti-double-stranded DNA antibodies in the sera significantly. Importantly, mice treated with YM-58483 showed decreased immune deposition in the glomeruli and alleviated kidney damage, which was further confirmed in NZM2328 lupus mice. Collectively, CRAC channel controlled the differentiation of pathogenic B cells and promoted the progression of LN. This study provides insights into the pathogenic mechanisms of LN and that CRAC channel could serve as a potential therapeutic target for LN.


Assuntos
Linfócitos B/imunologia , Canais de Cálcio Ativados pela Liberação de Cálcio/imunologia , Diferenciação Celular/imunologia , Nefrite Lúpica/imunologia , Animais , Humanos , Camundongos , Camundongos Endogâmicos MRL lpr
11.
ACS Appl Mater Interfaces ; 11(47): 44124-44132, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31670940

RESUMO

Li-metal anodes promise to build high-energy-storage systems, but they suffer from safety problems from severe dendrite growth. Here, we develop a thin and conformal hybrid ionic and electronic conducting metal-oxide nanofiber interface to stabilize Li-anodes without forming dendrites. The thin ionic-conductive Li0.33La0.56TiO3 (LLTO) nanofiber film is first fabricated by electrospinning followed by pyrolysis. After connecting with the electrolytes-wetted Li-metal anodes, due to the self-driven chemical reactions, LLTO is reduced, and a hybrid conducting interface is developed. The interface can act as a reservoir to redistribute the nonuniform Li-ion flux above the anode surface and reduce the driving force of dendrite formation by leveling electric potential distribution, enabling a stable Li plating-stripping with a low overpotential of 80 mV over 800 h at a high current of 5 mA/cm2. More practically, the Li-LiNi0.8Co0.15Al0.05O2 cells deliver a high capacity of 147 mA h/g at 1 C with a Coulombic efficiency of 99% over 150 cycles, offering prospects to achieve reliable Li-metal batteries.

12.
Small ; 15(47): e1905171, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31617321

RESUMO

Li metal is the optimal choice as an anode due to its high theoretical capacity, but it suffers from severe dendrite growth, especially at high current rates. Here, an ionic gradient and lithiophilic inter-phase film is developed, which promises to produce a durable and high-rate Li-metal anode. The film, containing an ionic-conductive Li0.33 La0.56 TiO3 nanofiber (NF) layer on the top and a thin lithiophilic Al2 O3 NF layer on the bottom, is fabricated with a sol-gel electrospinning method followed by sintering. During cycling, the top layer forms a spatially homogenous ionic field distribution over the anode, while the bottom layer reduces the driving force of Li-dendrite formation by decreasing the nucleation barrier, enabling dendrite-free plating-stripping behavior over 1000 h at a high current density of 5 mA cm-2 . Remarkably, full cells of Li//LiNi0.8 Co0.15 Al0.05 O2 exhibit a high capacity of 133.3 mA h g-1 at 5 C over 150 cycles, contributing a step forward for high-rate Li-metal anodes.

13.
Endocrinology ; 157(12): 4875-4887, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27700136

RESUMO

Adipose tissue plays an important role in regulating female fertility, owing to not only its energy stores but also the endocrine actions of secreted adipokines. As one of the adipokines, adiponectin is almost exclusively secreted from the fat, and its circulating concentration is paradoxically reduced in obesity. Although recent studies implied a purported positive role of adiponectin in ovarian functions, definitive in vivo evidence has been sorely lacking. We have consistently observed subfertility in female adiponectin null mice and therefore postulated a protective role of adiponectin in ovarian functions. Female adiponectin null mice displayed impaired fertility, reduced retrieval of oocytes, disrupted estrous cycle, elevated number of atretic follicles, and impaired late folliculogenesis. Analysis of their sera revealed a significant decrease in estradiol and FSH but an increase in LH and testosterone at proestrus. In addition, we found marked reduction of progesterone levels at diestrus, a significant decrease in LH receptor expression as well as in the number of GnRH immunoreactive neurons. Adiponectin deficiency also altered the peak concentrations of LH surge and led to lower expression of Cytochrome P450 family 11 subfamily A member 1 (P450scc), an enzyme critical for progesterone synthesis, as well as an increase in BCL2 associated X, apoptosis regulator and Insulin like growth factor binding protein 4 in atretic follicles. These physiological and molecular events were independent of insulin sensitivity. Thus, we have revealed a novel mechanism linking adiponectin and female fertility that entails regulation of reproductive hormone balance and ovarian follicle development.


Assuntos
Adiponectina/genética , Ciclo Estral/genética , Infertilidade Feminina/genética , Ovário/metabolismo , Adiponectina/metabolismo , Animais , Estradiol/sangue , Ciclo Estral/metabolismo , Feminino , Hormônio Foliculoestimulante/sangue , Infertilidade Feminina/metabolismo , Hormônio Luteinizante/sangue , Camundongos , Camundongos Knockout , Folículo Ovariano/metabolismo , Progesterona/sangue , Testosterona/sangue
14.
Oncol Rep ; 36(1): 49-56, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27220401

RESUMO

Pancreatic cancer has a poor prognosis. It is reported that the PI3K/Akt pathway is activated in many cancers, and inhibition of the PI3K/Akt pathway can induce cell apoptosis in most cancers. Polo-like kinase 1 (Plk1) is also overexpressed in most malignancies, and it controls multiple aspects of mitosis and apoptosis. Previous studies identified that PI3K/Akt-dependent phosphorylation of Plk1-Ser99 is required for metaphase-anaphase transition. In this study, we aimed to investigate the molecular mechanism of PI3K/Akt pathway regulating cell proliferation and apoptosis in pancreatic cancer cell lines (AsPC-1, BxPC-3, PANC-1). Immunohistochemistry (IHC) was used to assess Akt levels in human pancreatic tissues and pancreatic cancer tissues. MTT assay was used to detect cell proliferation. The mRNA was quantified by quantitative reverse transcription-PCR. Western blot analysis was used to detect the protein levels of p-Akt, Akt, Plk1, BAX, Bcl-2, XIAP, cleaved caspase-3 and caspase-3. Recombinant adenovirus vector containing Plk1-shRNA was constructed to inhibit Plk1 expression. Cell apoptosis was detected by flow cytometry and the apoptosis of tumor xenograft was assessed by TUNEL assay. The study showed that inhibition of PI3K/Akt pathway can induce cell apoptosis and reduce cell proliferation by downregulating Plk1 in vitro and in vivo. Additionally, Plk1 inhibition can lead to cancer cell apoptosis through inactivating XIAP, activating caspase-3, upregulating BAX and downregulating Bcl-2. Therefore, this study provided the molecular mechanism of PI3K/Akt pathway and Plk1 in the pancreatic cancer cell proliferation and apoptosis, which may benefit for the therapy of pancreatic cancer.


Assuntos
Apoptose/genética , Proteínas de Ciclo Celular/metabolismo , Neoplasias Pancreáticas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Caspase 3/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Cromonas/farmacologia , Feminino , Humanos , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Nus , Morfolinas/farmacologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Proteína X Associada a bcl-2/metabolismo , Quinase 1 Polo-Like
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...